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A B S T R A C T

Genetic erosion of crops has been determined way back in the 1940s and accelerated some twenty years later by
the inception of the Green Revolution. Claims that the revolution was a complete triumph remain specious,
especially since the massive production boost in the global big three grain crops; wheat, maize, and rice that
happened back then is unlikely to recur under current climate irregularities. Presently, one of the leading
strategies for sustainable agriculture is by unlocking the genetic potential of underutilized crops. The primary
focus has been on a suite of ancient cereals and pseudo-cereals which are riding on the gluten-free trend, in-
cluding, among others, grain amaranth, buckwheat, quinoa, teff, and millets. Each of these crops has demon-
strated tolerance to various stress factors such as drought and heat. Apart from being the centuries-old staple in
their native homes, these crops have also been traditionally used as forage for livestock. This review summarizes
what lies in the past and present for these underutilized cereals, particularly concerning their potential role and
significance in a rapidly changing world, and provides compelling insights into how they could one day be on par
with the current big three in feeding a booming population.

1. Introduction

Vavilov’s vision a century ago that wild genetic diversity could one
day be lost has rung true in the world we live in today. Approximately
90% of the world’s calories are provided by less than one percent of the
known 250,000 edible plant species [1]. Although the idea has always
lingered that the big three grain crops (wheat, Triticum aestivum; maize,
Zea mays; and rice, Oryza sativa) are tyrannously weakening global food
security, this notion has garnered significant attention in recent years,
spurred mainly by the presumption that world grain production per
capita will likely decline by at least 14% between 2008 and 2030 [2].
Climate change, which is often associated with an increase in biotic and
abiotic stresses leading to crop failure within affected regions, is a
major barrier to feeding the nine billion people estimated to inhabit the
planet by the mid-century [3,4]. In Africa, for example, maize yields are
modeled to decrease by 22–35% by 2030 because of the increasingly
variable rainfall patterns and local temperatures [5]. In addition to
climate variability, global staple crop production is also threatened by
constraints including eroded natural resources, accelerated soil erosion,
and land degradation [6]. One critical measure to assure future food
security for all is to provide more diversified food sources and agri-
cultural systems [7], which may also bring back the approximately 75%
genetic crop diversity that was lost along the way [8]. This loss of

genetic diversity imperils crop advances and undermines sustainable
agriculture [9,10].

True cereals and pseudo-cereals, currently furnishing at least two-
thirds of the world’s food calories, have been a symbol of human life
and culture throughout history. In general, both true cereals and
pseudo-cereals are grouped together based on their common use as
edible starchy grains, rather than their plant biology [11]. Major grain
crops were domesticated by ancient civilizations almost four millennia
ago, and they are continually being improved and transformed into
highly productive crops to feed humankind [12]. On the contrary,
hundreds of underutilized crops (also known as minor, neglected, or
orphan crops) have either been modestly modified or reverted to the
wild until recently [13]. The gluten-free wave, coined in the late 2000s,
has breathed new life into a handful of long-forgotten cereal species,
such as quinoa (Chenopodium quinoa), teff (Eragrostis tef), and amaranth
(Amaranthus spp.) [3,7]. Many notable studies over the last decade have
explored these crops’ genetic and genomic resources, with the most
recent example being the release of quinoa’s complete genome se-
quence [14]. This review highlights the past, present, and the plausible
future of these highly potential gluten-free grains as the key re-
presentatives of underutilized cereals in shaping a sustainable future.

https://doi.org/10.1016/j.plantsci.2018.01.018
Received 6 December 2017; Received in revised form 14 January 2018; Accepted 31 January 2018

⁎ Corresponding author.
E-mail address: acgacheng@um.edu.my.

Plant Science 269 (2018) 136–142

Available online 05 February 2018
0168-9452/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01689452
https://www.elsevier.com/locate/plantsci
https://doi.org/10.1016/j.plantsci.2018.01.018
https://doi.org/10.1016/j.plantsci.2018.01.018
mailto:acgacheng@um.edu.my
https://doi.org/10.1016/j.plantsci.2018.01.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.plantsci.2018.01.018&domain=pdf


2. The brass tacks of trending ancient grains with gluten-free
property

2.1. Proso millet

Millets, which belong to the grass family Poaceae (or Gramineae),
are small-seeded cereals grown predominantly in the semi-arid tropics
of Asia and Africa [15]. Some of the most widely cultivated millet
species include proso millet, pearl millet (Pennisetum glaucum), finger
millet (Eleusine coracana), and foxtail millet (Setaria italica) [16,17]. In
the United States, these cultivated millets are principally used as bird
and livestock feed, except for proso millet, which is primarily grown for
human consumption [18]. Proso millet, also known as broomcorn and
common millet, is a warm-season annual plant native to North China
[19,20]. As a C4 crop, proso millet flourishes in arid and semi-arid
regions prone to drought and heat, where most major cereals fail to
adapt [21]. It requires exceptionally little water to grow and has the
shortest growing season (60–90 days) among all true cereals [22].
Dating back to 10,000 BCE, proso millet was cultivated widely across
Eurasia and was introduced into North America in the 1880s [23–25].
The exact diploid or tetraploid progenitors of domesticated proso millet
are unknown [26], although its relationship to other species in the
Panicum clade has been explored [19]. The species has been found to
show exclusive bivalent formation during meiosis, indicating that it
may be an allotetraploid (2n=4x=36) [17]. The phylogenetic study
conducted by Hunt et al. [27] supported the allotetraploid origin of
proso millet, suggesting that P. capillare (2n=2x=18) or a close re-
lative was its maternal ancestor. Proso millet’s estimated haploid
genome size is 1020 Mbp [28]. Among all cultivated millets, only
foxtail millet’s entire genome of approximately 423 Mbp has been
completely sequenced, which occurred in 2012 [29].

2.2. Teff

Teff (alternatively spelled tef) is another warm-season annual from
the Poaceae family [30]. Deemed the world’s smallest grain, teff is the
first sequenced member of the Chloridoideae subfamily, which is
comprised entirely of C4 species. The closest cultivated species to teff is
finger millet, the only millet that shares this subfamily, with teff’s
closest subfamily being Panicoideae, which encompasses all other
known cultivated millets [31,32]. Teff’s diploid progenitors remain
unknown [32,33], although some early studies suggest that teff is clo-
sely related to the wild allotetraploid, E. pilosa, which is characterized
by its early maturity and seed shattering [34,35]. Sequence analysis
data of the nuclear gene waxy and plastid locus rps16 provide further
support for this reported evolutionary relationship [36]. Existing for
more than 6000 years, the earliest domesticated teff is thought to have
originated from Ethiopia, where it is now grown annually by more than
six million farmers [37]. Teff thrives in warm climates and is ex-
ceptionally tolerant to drought and heat, making it a reliable staple in
its native home for centuries [38]. Its plant residues, particularly its
straw, are commonly used as fodder for livestock or building materials
for homes [39]. In developed countries such as Australia and the United
States, teff has been traditionally grown as a forage crop [40], and its
potential as a healthy alternative to wheat remained unexplored until
recently [35]. Teff is an allotetraploid species (2n= 4x=40) with a
medium-sized genome of approximately 730 Mbp [30,32]. The first teff
genome draft was released in 2014, covering 87% of its estimated
genome size [32]. This genome draft was recently used to analyze the
seed storage protein genes in the subfamily Chloridoideae, and these
genes have been shown to evolve rapidly in different grass species,
including wheat, maize, and rice [41].

2.3. Quinoa

The centuries-old sacred seed of the Incas, quinoa, which was once

scorned by the Spanish conquistadors, is now known as one of the
healthiest grains, which flourishes in hostile environments with poor
and salty soil [42]. Lake Titicaca along the border of Bolivia and Peru is
considered quinoa’s center of origin, and it is predicted to have been
domesticated around 7000 years ago [43]. Similar to teff, quinoa is an
allotetraploid (2n=4x=36), originating from two hybridized diploid
progenitors [44]. Quinoa is botanically similar to sugar beet (Beta vul-
garis) and spinach (Spinacia oleracea), which are all members of the
goosefoot family (Chenopodiaceae), now part of the amaranth family
(Amaranthaceae) [45]. Quinoa’s genome is approximately 1450 Mbp
[46] was recently fully sequenced using single-molecule real-time se-
quencing [14]. The same study also sequenced two diploid progenitors
of quinoa, cañahua or kañiwa (C. pallidicaule) and goosefoot (C. sue-
cicum), and several of its diploid and tetraploid relatives, including
pitseed goosefoot (C. berlandieri) and avian goosefoot (C. hircinum),
casting new light on quinoa’s evolutionary history. The study signified
that quinoa was likely to have been domesticated independently in both
highland and coastal environments, rather than in a single event as
predicted previously [14]. In addition, the study reported a total of
2,668,694 SNPs that were specific to quinoa and can be used for various
genetic and genomic applications, particularly to analyze the crop’s
genetic diversity, which remains largely unexplored [14,47]. Quinoa’s
seed coat naturally contains 2–5% triterpenoid glucosides called sapo-
nins, which give the grain an unpalatable, bitter taste [48]. Ward [49]
reported that the grain-saponin content in quinoa was a quantitative
trait, and the recessive allele at the Sp locus inhibited saponin synthesis
in two Bolivian lines. To date, little is known about saponin biosynth-
esis in quinoa, although several candidate genes underlying its bio-
synthesis and production have been identified [14,50].

2.4. Amaranth

Amaranth is the collective name for approximately 60 members of
Amaranthus, another genus in the family Amaranthaceae, which har-
bors several cultivated species used mainly as grains and leafy vege-
tables [51,52]. Native to Central and South America, amaranth was
presumably first domesticated as a grain crop 8000 years ago by the
ancient Aztecs. Like quinoa, amaranth was once a sacred grain of pre-
Columbian cultures that faded into obscurity when the Spanish arrived
at its native land nearly five centuries ago [53,54]. The grain resurged
in the 1970s due largely to its high nutritional value [55]; having ex-
ceptionally high levels of lysine, an amino acid that is often lacking in
major cereals [56]. Three species of amaranth have been cultivated
almost exclusively for grains since ancient times: A. caudatus (love-lies-
bleeding), A. cruentus (red amaranth), and A. hypochondriacus (Prince-
of-Wales feather) [57]. These species are warm-season C4 annuals that
exhibit good drought resistance and can readily adapt to new, extreme
environments [58]. Together with two weedy species, A. hybridus and
A. quitensis, they form the hybridus species complex, but the boundaries
between these five species are vague [59,60]. A recent phylogenetic
analysis conducted by Stetter and Schmid [61] indicates that A. hy-
bridus is likely the ancestor of all three cultivated species, while A.
quitensis may be an intermediate between A. hybridus and A. caudatus.
The number of chromosomes varies among species within the genus
Amaranthus, which has two established basic numbers of 16 and 17
[62]. The gametic chromosome number, n= 17, may originate from
n=16 through primary trisomy [63]. Among the five species in the
hybridus species complex, only A. cruentus has a gametic number of 17
(2n=2x=34), whereas the other four species, A. caudatus, A. hy-
pochondriacus, A. hybridus, and A. quitensis, have gametic numbers of 16
(2n=2x=32) [63,64]. Nevertheless, all five species possess a genome
size near 500 Mbp, indicating that no correlation exists between
chromosome number and genome size [61,63].
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2.5. Common buckwheat

Another ancient pseudo-cereal with comparable potential to quinoa
and amaranth is common buckwheat, a short-season summer annual,
which usually completes its life cycle in only around 70 days [65].
Common buckwheat is believed to have originated and been first do-
mesticated in Eastern Asia around 6000 BCE, arriving in Europe around
the 1400s, and introduced into North America by the Europeans in the
1600s [66]. The buckwheat genus (Fagopyrum) in the Polygonaceae
family consists of nineteen known species, with common buckwheat
and tartary buckwheat (F. tataracum Gaertn.) being the only two cul-
tivated species [67]. Currently, common buckwheat accounts for over
90% of the global buckwheat production, making it the most eco-
nomically important Fagopyrum species worldwide [68]. Nonetheless,
tartary buckwheat is considered more important in the Himalayan re-
gion, as it can be grown at high altitudes around 3500m [69]. The first
chloroplast genome sequence of tartary buckwheat was recently com-
pleted and compared with the genome of common buckwheat’s wild
ancestor, F. esculentum spp. ancestrale [70]. Buckwheat generally has
more protein than other wheats, maize, and rice [71]. Additionally, its
seeds are high in flavonoids, primarily rutin, which has antioxidant and
antidyslipidemic effects [71,72]. Rutin concentrations in common
buckwheat are lower than other buckwheat species; hence, many stu-
dies have attempted to understand the biosynthesis and accumulation
of flavonoids in this species [69]. Elucidating the genetic basis of the
flavonoid biosynthetic pathway has, however, proved challenging in
buckwheat, as well as in other crops such as banana [73,74]. Buck-
wheat has a diploid (2n= 2x=16) genome of approximately 1200
Mbp [75], which is relatively large compared with other diploid plants,
including the model plants Arabidopsis thaliana; ca. 135 Mbp [76] and
rice; ca. 430 Mbp [77].

3. The why and how of deciphering the potential of underutilized
cereals

3.1. Role and significance of underutilized cereals in coping with climate
change

Increasing evidence shows that climate change threatens major crop
production in many countries, particularly those in the hottest, driest,
and most arid regions of the world [3,7,78]. At present, drought is one
of the most critical abiotic stresses negatively affecting major cereal
productivity [79]. Based on the Palmer Drought Severity Index [80],
the percentage of drought-affected areas has risen globally since the
1960s, from approximately 5–10% to 15–25% [78,81]. Many under-
utilized cereals are relatively more drought-tolerant than most major
cereals, one of the more renowned examples being amaranth, which is
often hailed as the drought-beater [82–84]. Studies have found that the
ability of amaranth to withstand severe drought is closely related to its
superior water use efficiency, and the capacity to develop an extensive
lateral root system in response to water shortage in soils [85,86]. The
water use efficiency in amaranth was found to be higher than some
economically important crops, including maize and wheat [58,87]. Teff
and proso millet are other C4 plants that are drought-tolerant and can
survive in various agro-ecological zones [38,88]. Apart from being re-
gional staples, they have also been traditionally used as forage crops for
livestock, especially in the forms of hay and silage [89,90].

Recent reports have also shown that widespread changes in tem-
perature extremes can adversely affect major crop production [79,91].
Maize and wheat yield losses are estimated to nearly double by the
2080s, following increased heat stress at anthesis [91]. A study con-
ducted by Lobell et al. [92] revealed that extreme weather with tem-
peratures above 30 °C has negatively impacted wheat yields in India.
Rice yields, on the other hand, have been reported to be negatively
affected by higher night temperatures, at 32 °C and above [93]. Some
underutilized crops are reported to tolerate temperatures well above

35 °C, including proso millet [94] and teff [95]. Cold stress is another
critical factor that threatens the productivity of several major crops,
including maize, rice, and soybean, which are sensitive to cold [96,97].
Quinoa is a notable example of underutilized cereal that thrives in cold
temperatures as low as −8 °C and survives light frosts [98]. Despite
being a C3 plant, quinoa is remarkably drought-resistant, owing to its
branched and deep root system [99] and the presence of calcium ox-
alate in its leaf vesicles, which reduces transpiration [100,101].

Although major cereal productivity in many countries has increased
several-fold since the dawn of the Green Revolution [102], these crops
are intolerant of nutrient-poor soils and require proper irrigation and
high chemical fertilizer and pesticide doses to grow, all of which de-
grade the soil [103]. A few underutilized cereals have been acclaimed
to perform excellently in poor soils, one example being buckwheat
[104]. Besides striving in both infertile and acidic soils, buckwheat has
a short growing season of ten weeks or less, making it a good weed
suppressor [105]. Quinoa, amaranth, and teff also tolerate poor soils,
with the first two also being capable of adapting to saline soils [42].
Salinity stress, along with other previously discussed abiotic stresses,
influences the occurrence and spread of pests, pathogens, and weeds
[84,106]. Cold stress, for example, impairs gene silencing in plants,
weakening their defense mechanisms and making them more suscep-
tible to pathogen infection [104]. Similar to major crops, underutilized
cereals are not entirely free of diseases and pests. Nonetheless, they are
often more tolerant of some pests and diseases than other crops that
grow in their native homes [95,107]. For example, A. caudatus and A.
hypochondriaus were both reported to directly defend against insect
herbivores such as aphids [108,109], which are known mainly to infect
major grain crops including maize [110] and wheat [111].

The value of underutilized cereals goes far beyond simply being
climate-resilient, as many of them are packed with nutritional benefits.
Some of these cereals also have an extra boon for being naturally
gluten-free [7]. Humans have been consuming gluten-rich grains, such
as wheat, for thousands of years, but only recently have the health is-
sues surrounding gluten intake been recognized, most noticeably in
developed countries. Gluten, a primary storage protein in dietary wheat
is formed by cross-links between gliadin and glutenin molecules [112].
For people with celiac disease, a highly complex immune-related dis-
ease with a strong genetic component, briefly ingesting gluten can
trigger inflammation and intestinal damage, possibly affecting multiple
organ systems [112,113]. Starches from white bread and white rice
have been reported to digest readily in the small intestine, leading to a
rapid increase in blood glucose, which may be linked to a higher risk of
obesity [10]. Public concern is growing that gluten may increase the
risk of cardiovascular and metabolic syndromes, and thus, strict gluten
avoidance has now become a dietary choice, even among people
without celiac disease [10,114,115]. This is especially true in the West
where the demand for healthy wheat alternatives and organic products
is rising rapidly [3]. This food trend has created a vast demand for
gluten-free grains.

The extreme monoculture that has spread throughout agriculture
since the inception of the Green Revolution has reduced the genetic
differences within varieties [8,116,117]. Decreased crop genetic di-
versity could lead to significant risks for sustainable food supplies, as
genetic resources are essential for both viable and competitive plant
breeding [118]. Exploiting underutilized cereal species that are more
resilient to certain climates and environments could be vital in ex-
panding agronomic crop productivity in terms of yield and nutrient
quality. Apart from buffering crop improvement and food production,
genetic diversity also provides regulatory ecosystem services such as
controlled soil erosion, reduced greenhouse gas emissions and nutrient
cycling [117]. The importance of germplasm collection and under-
utilized species conservation is currently recognized by various global
organizations and institutions, including giants such as the Food and
Agriculture Organization of the United Nations (FAO) and Biodiversity
International [7].
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3.2. A glimpse into the key research areas of underutilized cereals

Recent findings indicate that genetically improving the major grain
crops alone will be insufficient to feed the rapidly growing population,
mainly because they are unsuited to hostile weather patterns and low-
input environments [119]. While many underutilized cereals are more
versatile than the major cereals due to their high tolerance to various
biotic and abiotic stresses, they have their shortcomings in becoming
primary food sources, one of which is their low or erratic yields
[7,107,120]. Consequently, this is one priority research area that de-
mands immediate attention and efforts to enhance breeding and ge-
netics in these crops.

Advances in genetic technology, notably next-generation sequen-
cing (NGS), are invaluable for improving major grain crops. Take rice,
for example, the completion of its genome over a decade ago has led to
the discovery of numerous genes associated with complex traits, such as
the SUB1 gene that confers submergence tolerance [121]. The rice
genome has also paved the way for the sequencing of other cereals with
larger and more complicated genomes, including maize; ca. 2500 Mbp
and wheat; ca. 17,000 Mbp [122]. Howbeit continual improvement of
major cereals is essential, more opportunities should be given to un-
derutilized cereals to relish the impressive progress of sequencing
technology and other high-throughput genomic approaches, for ex-
ample, microarrays, which have unraveled many functional genes af-
fecting agronomic traits in major cereals [123]. In fact, several previous
studies have shed light on the molecular mechanisms underlying biotic
and abiotic stress tolerance for some potential underutilized cereals,
including proso millet, teff, quinoa, amaranth, and buckwheat, and
several key genes linked to their stress responses have been identified
(Table 1). However, progress in the use of marker-assisted selection as
part of their breeding program continues to lag overall [123,124].

Socio-economic sustainability is another priority area that requires
attention. It should involve technological approaches such as devel-
oping eco-innovative strategies for waste prevention and management
in urban and suburban areas, as well as non-technological approaches
including initiatives to raise awareness, given that underutilized cereals
are lesser known outside their regions of origin. Developing countries,
such as China and India, are seeing fast-paced population growth as of
late, leading to a major shift from rural to urban settings [133,134].
Urbanization is closely associated with economic growth, which often
leads to lifestyle and consumption pattern changes, some of which are
negative [133]. For example, urban populations tend to consume more
expensive nutrient sources, such as organic grains and beans, while
consumption of common crops such as major cereals, is lower
[133,135]. As such, a balanced development and use of both major and
underutilized crops are ultimately what the world needs at present.

4. Towards achieving sustainable food systems: an agricultural
perspective

The past decade has seen radical moves from the scientific com-
munity in introducing and developing numerous underutilized crop
species, from ancient cereals, such as quinoa and teff, to the “poor
man’s pulses” such as chickpea (Cicer arietinum) and bambara
groundnut (Vigna subterranean) [7,84,136,137]. Underutilized species
are fast becoming key players in shaping a more diversified global
agricultural and food system, which appears to hold great promise for
future livelihoods. Not only can the underutilized species be exploited
for diversifying food sources and nutritional enrichment, but they can
also establish sustainable and resilient agriculture [10,138]. Fig. 1
shows how underutilized species may accelerate the process of
achieving climate-smart agriculture through sustainable intensification,
adaptation and mitigation. It is worth noting that globalization in the
form of the Green Revolution, as much good as has come from it, has
somehow created social inequalities over the past decades, almost en-
tirely benefiting the large-scale farmers, while the peasant farmers often
live in poverty [7]. Adopting underutilized cereals can, in contrast, help
many small-scale farmers, especially those in developing regions that
cannot afford high-input agriculture [107]. This may help ensure the
farmers’ livelihood, with minimal use of inputs such as land, water, and
fertilizer [138,139].

The broader adoption of underutilized crops can also benefit the
environment. For example, by growing drought-resistant crops, less
irrigation is needed, thus preventing water waste. Similarly, by growing
crops that are naturally resistant to certain pests and diseases, certain
harmful chemical pesticides can be avoided. All these features make
many hardy and versatile underutilized crops the ideal alternative crops
for a world undergoing vigorous changes in weather patterns, as well as
in food consumption and production patterns [140]. Adopting these
crops can also help restore the crop genetic diversity that has been lost
over the past century, mainly as a result of monocultures [8,117].
Succinctly, exploiting underutilized crops would directly contribute to
several sustainable development goals (SGDs) proposed by the United
Nations, including, but not limited to, ending poverty and hunger, as-
suring healthy lives, and creating resilient and sustainable human set-
tlements (https://sustainabledevelopment.un.org/sdgs).

Skepticism surrounding the idea of crop diversification by some
researchers, funding agencies and entities is understandable, especially
when millions of lives were preserved by merely a few crop types
during the Green Revolution. A few fundamental disparities, however,
must be recognized and considered if we are to make a valid resem-
blance of the past to the present. It begs the questions of whether the
earth today remains gifted with the same fertile soil as fifty years ago?

Table 1
Examples of recent studies utilizing identified genes linked to biotic and abiotic stress
response in promising underutilized cereals and pseudo-cereals.

Species Gene Type of tolerance(s) Reference

Panicum miliaceum WRKY Abiotic stresses (incl. drought
and heat stresses)

[125]

Eragrostis tef α-Tubulin Lodging [126]
Chenopodium quinoa AHA Pathogen resistance [127]

BADH Salt stress [128]
Amaranthus caudatus ACA Aphid resistance [108]
Amaranthus

hypochondriacus
Ah24 Biotic and abiotic stresses

(incl. defense against
herbivory)

[109]

NF-YC Water-deficit stress [129]
AhDRG2 Water-deficit and salinity

stresses
[130]

Amaranthus cruentus LEA Abiotic stresses (incl. oxidant
conditions and osmotic
stress)

[131]

Fagopyrum esculentum FeDREB1 Freezing and drought stresses [132]

Fig. 1. Towards achieving climate-smart agriculture using underutilized species.
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Have the pests of today evolved to become more resistant towards
commonly used pesticides? Are changes in the global climate stimu-
lating or deterring major crop yields? We know that the world is dif-
ferent today than it was before, and to a certain extent, we can all agree
that the answers to those questions would most likely lean towards the
negative. Developing and using underutilized cereals may not save the
world overnight, but these cereals’ ability to survive the changing
planet demonstrates that they are worthy of being explored.
Nevertheless, some major challenges lie ahead in fully exploring the
potential of these crops [7,141], which are presented in Fig. 2. A con-
certed global effort from various parties, especially breeders and re-
searchers, is crucial to unleash the full potential of these crops, espe-
cially when the possibilities are endless with recent advances in
agricultural biotechnology.

5. Conclusion

Many underutilized cereal species are suitable for growing in
weather or conditions that are commonly perceived as ‘bad’, and for
this reason, they should be explored, developed, and exploited now
more than ever. With their resilience to various biotic and abiotic
stresses, underutilized cereals could be the answer to the grim state of
food security, while also catering to the nutritional demands of a
growing population. These aims are consistent with the current global
sustainability agenda on food and nutrition security.
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